
Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

Simulating Light Behavior Using Vector through Path

Tracing for Realistic Image Rendering

Fachriza Ahmad Setiyono - 13523162

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1rizacal.mamen@gmail.com, 13523162@std.stei.itb.ac.id

Abstract—Path tracing, a widely used technique in computer

graphics, models light transport by tracing rays and computing

their interactions with surfaces. The study begins by examining the

use of photorealistic image rendering, the fundamental properties

of light, including reflection, refraction, and scattering, and

demonstrates how these behaviors can be mathematically

represented using vectors. Key vector operations such as dot and

cross products are analyzed to handle computations related to

surface normals, ray directions, and light intensity.

Keywords—Light Transport, Path Tracing, Physically Based

Rendering, Vector Operations.

I. INTRODUCTION

Rendering realistic digital images has been an ongoing

challenge in the computer graphics field. Several rendering

techniques have been developed by researchers but there are 2

techniques that are widely used, rasterization and ray tracing.

These 2 techniques are fundamentally different, thus has its own

strengths and weaknesses. Rasterization works by projecting

triangles directly to the screen, while ray tracing traces numbers

of rays from the camera to objects, which results in higher

performance cost. Despite being slower, ray tracing is still

widely used for rendering photorealistic images because tracing

individual ray means we can accurately simulate how real light

behaves in real life.

Photorealistic image rendering is a field within computer

graphics which focuses on producing realistic images by

simulating real life physics phenomena in a way that models

light and its interaction with surfaces. This approach is often

called Physically Based Rendering (PBR). PBR has a lot of uses,

especially in the entertainment industry such as video games and

movies. In the business industry, PBR can be used to market and

visualize products. Using computer-generated image is often

favored because of its lower cost and higher efficiency while

still being able to resemble the real product accurately. PBR is

also used for educational purposes, such as flight and medical

simulations.

One of the most popular techniques to render photorealistic

images is path tracing. Path tracing utilizes ray tracing and

expands on it by allowing light bounce after hitting a surface.

Illustration of how ray bounces is shown in Fig. 1.

Fig. 1. Ray bounces in path tracing

(Source: https://www.techspot.com/articles-info/2485/images/2022-07-10-

image.png)

Wave-particle duality theory states that light has the

properties of both a wave and a particle. In an ideal environment,

light as a particle moves in a straight line through a 3-

dimensional space, while light as a wave “moves’ in a manner

that resembles a wave function. Vector is used to represent light

particles or rays as rays consist of an origin point and direction.

This method of simulating light as rays is called geometric optic,

as opposed to wave optic. However, simulating only the particle

properties of light means that we cannot achieve physical

phenomena caused by wave optics such as thin-film interference

and diffraction. In this paper, we consider that only simulating

light as a ray is sufficient to demonstrate the use of vector.

We will also analyze how vector algebraic operations are used

in rendering techniques such as ray tracing and path tracing. In

a state-of-the-art ray tracer, a more complex concept such as

quaternion algebra and matrix operations might be used.

However, that is outside the scope of this paper. This paper

offers insights into how vectors serve as the foundation for

modern rendering techniques and provides a basis for extending

these methods to more advanced light simulations.

II. BACKGROUND

A. Euclidean Vector

Euclidean vector or a vector is a mathematical geometric

object that consists of magnitude and direction. Vectors are

denoted as lowercase letter with arrow or hat on top such as 𝑢⃗
and 𝑣̂.

Vector can also be denoted as two uppercase letters with

mailto:1rizacal.mamen@gmail.com
mailto:13523162@std.stei.itb.ac.id
https://www.techspot.com/articles-info/2485/images/2022-07-10-image.png
https://www.techspot.com/articles-info/2485/images/2022-07-10-image.png

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

arrow on top 𝐴𝐵⃗⃗⃗⃗ ⃗ to depict a connection from point A to point B.

The magnitude of a vector is the distance between the two points

while the direction is the direction of the vector displacement.

Vectors can also be written in a coordinate system such as

(𝑣1, 𝑣2, 𝑣3) to represent a 3-dimensional vector 𝑣 . The

coordinate system used here refers to (0,0,0) as the origin point.

There are various types of vectors such as:

1. Zero Vector

Zero vector is a vector with magnitude of zero and no

direction, denoted by 0⃗ . In a 3-dimension Euclidean space

with coordinate system, the zero vector is written as (0,0,0).

2. Position Vector

A point in an n-dimensional space is represented by n-

dimensional vectors. Position vector is denoted with

lowercase letter with arrow on top such as 𝑢⃗ . In physical

sense, the magnitude of position vector is the distance

between the point and other relative arbitrary point, usually

the origin point 0⃗ . This means that a single point has

different position vectors in relation to different reference

points.

3. Unit Vector

Unit vector is a vector with magnitude of 1, denoted by

lowercase letter with a hat as in 𝑣̂. We can say that the

normalized vector 𝑢̂ is the unit vector of a non-zero vector

𝑢⃗ , or in mathematical notation,

𝑢̂ =

𝑢⃗

‖𝑢⃗ ‖

(1)

Because of this, the term unit vector and normalized vector

is often synonymously used.

 Unit vector is used a lot in the scope of computer

graphics, notably to denote directions. Having the direction

normalized simplifies the unit to be used by other

operations that requires direction. For instance, a ray in a 3-

dimensional space from point A to point B in reference to

the origin point can be formed with a position vector and a

unit vector as a direction with multiplier 𝑡 as the ray

distance. This can be written as:

 𝑃(𝑡) = 𝑂⃗ + 𝑡𝐷̂

(2)

Where:

𝑂⃗ : Ray origin point

𝐷̂: Ray normalized direction from 𝐴 to 𝐵

𝑡: Ray Euclidean distance

Equation (2) is called the parametric equation for rays. If

the ray direction were not normalized, then we must

account for the length of the direction vector when

calculating the distance 𝑡. Having said that, normalizing

vector is considered a costly operation, so it is wise to

normalize a vector only when it is needed.

4. Normal Vector

Normal vector or simply normal is a vector that is

perpendicular to its surface. While normal vector does not

have to be a unit vector, it is very common to normalize

normal vector for the very same reason explained in the

previous section. In computer graphics, normal is required to

calculate the shading on a surface. Normal can be calculated

by finding the cross product of the surface points.

B. Euclidean Vector Space

A set of Euclidean vectors forms a Euclidean vector space, or

simply called a Euclidean space. Euclidean space of n-

dimensional vectors is denoted with 𝑅𝑛. In this paper, we will

mostly deal with 3-dimensional Euclidean space.

All vectors within the Euclidean space must satisfy the

properties of algebraic operations in a Euclidean space:

a) 𝑢⃗ + 𝑣 = 𝑣 + 𝑢⃗
b) 𝑢⃗ + (𝑣 + 𝑤⃗⃗) = (𝑢⃗ + 𝑣) + 𝑤⃗⃗
c) 𝑢⃗ + 0 = 0 + 𝑢⃗ = 𝑢⃗
d) 𝑢⃗ + (−𝑢⃗) = 0

e) 𝑘(𝑢⃗ + 𝑣) = 𝑘𝑢⃗ + 𝑘𝑣

f) (𝑘 + 𝑚)𝑢⃗ = 𝑘𝑢⃗ + 𝑚𝑢⃗
g) 𝑘(𝑚𝑢⃗) = (𝑘𝑚)𝑢⃗
h) 1𝑢⃗ = 𝑢⃗

Vectors also have other operations defined in this space,

such as:

1. Dot Product

A dot product of two non-zero Euclidean vectors 𝑢⃗ and

𝑣 with angle 𝜃 is defined by geometric definition as:

 𝑢⃗ ∙ 𝑣 = ‖𝑢⃗ ‖‖𝑣 ‖ cos 𝜃

(3)

In computer graphics, dot product or inner product is

heavily used to calculate the product of cos 𝜃 between two

unit vectors. Looking at (3), if two of the vectors are

normalized, then we can simply write it as:

 𝑢̂ ∙ 𝑣̂ = cos 𝜃

(4)

Note that the result of dot product operation is a scalar

and if both vectors are orthogonal, the resulting dot product

is 0.

2. Cross Product

A cross product is only defined in a 3-dimensional

Euclidean space and is denoted by 𝑢⃗ × 𝑣 . The result of a

Fig. 2. a) Vector in a 2-dimensional Euclidean space and b) Vector in a 3-

dimensional space

(Source: Vektor di Ruang Euclidean (bagian 1)-2024)

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-2025/Algeo-11-Vektor-di-Ruang-Euclidean-Bag1-2024.pdf

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

cross product between 2 vectors is another vector that is

perpendicular to both vector 𝑢⃗ and 𝑣 . Mathematically, cross

product is defined as:

 𝑢⃗ × 𝑣 = ‖𝑢⃗ ‖‖𝑣 ‖ sin 𝜃 𝑛̂

(5)

Where:

𝜃: Angle between vector 𝑢⃗ and 𝑣

𝑛̂: Unit vector of the resulting vector

Cross products can be used to calculate the normal of a

surface or plane 𝑃 that is defined by set of points in space.

Let 𝑃 and 𝑃1 be 3-dimensional position vector inside a

defined plane 𝑃 that are not parallel to each other, then the

plane normal 𝑛⃗ can be calculated by finding the cross

product between 𝑃 and 𝑃1. Note that you cannot use two

position vectors that are parallel to calculate the normal

because the angle would be either 0° or 180°, which will

result in the product of sin 𝜃 in (5) being zero, thus

nullifying the normal vector. In computer graphics, we

usually use quad or triangle vertices as the points relative to

the surface to calculate the normal vector.

C. The Rendering Equation

Reference [1], [2] introduces the rendering equation (also

called the reflectance equation) to the computer graphic field, an

equation that models the interaction between light and surface.

We can write a more generalized form of the equation as:

𝐿0(𝑥, 𝜔𝑜) = ∫ 𝑓𝑟(𝑥, 𝜔𝑖 , 𝜔𝑜)𝐿𝑖(𝑥, 𝜔𝑖)𝑛̂ ∙ 𝜔𝑖 𝑑𝜔𝑖

Ω

+ 𝐿𝑒(𝑥, 𝜔𝑜)

(6)

Where:

𝑥: Position in space

𝑛̂: Unit normal vector at 𝑥

𝜔𝑜: Direction of outgoing radiance

𝜔𝑖: Negative direction of incoming radiance

𝐿𝑜: Outgoing light radiance

𝐿𝑖: Incoming light radiance

𝐿𝑒: Emitted light radiance

𝑓𝑟: Bidirectional Reflectance Distribution

Function (BRDF)

In other words, this equation states that at point 𝑥, the light

coming in the direction of observer (e.g. our eyes) is the sum of

infinitely many incoming lights from another point in space

around the normal hemisphere multiplied by some factor. A

hemisphere can be described as half a sphere aligned around the

surface normal. Note that (6) considers every point visible from

𝑥 as light sources.

The incoming lights are multiplied by the factor BRDF (𝑓𝑟)

and the dot product between the surface normal and the

incoming light direction (𝑛̂ ∙ 𝜔𝑖). The BRDF is a function that

approximates how much an incoming light will contribute to the

final reflected light. There are many BRDF model such as Blinn-

Phong Model, Cook-Torrance Model, and Oren-Nayar Model.

Some models like Cook-Torrance is considered as a microfacet

model. These models works by statistically modelling the

scattering of light from a large collection of many microscopic

mirror-like surfaces (microfacet) that defines a surface.

Microfacet models are used because we are limited by a lot of

factors such as the screen pixel size. In Fig we can see the

“macrosurface” as the blue line with the normal going straight

up. If that is the smallest pixel that can be drawn to the screen,

then we cannot represent how the surface is much rougher than

it is, as shown by the jagged lines.

D. Path Tracing

Path tracing is a Monte Carlo method to solve the rendering

equation. If we look back at (6), it is clear that the incoming light

radiance from a direction 𝜔𝑖 must be known. But that incoming

light from 𝜔𝑖 also need to be calculated using the rendering

Fig. 4. Calculating plane normal using cross product.

(Source: https://www.songho.ca/math/plane/plane.html)

Fig. 3. Hemisphere oriented around normal

(Source: https://learnopengl.com/PBR/Theory)

Fig. 5. Microfacet for a) very rough surface and b) smoother surface.

(Source: https://pbr-book.org/3ed-
2018/Reflection_Models/Microfacet_Models)

https://www.songho.ca/math/plane/plane.html
https://learnopengl.com/PBR/Theory
https://pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models
https://pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

equation, adding layers of complex recursion. This makes it

generally impossible to solve the equation analytically.

Path tracing works by generating several random rays from

the surface normal hemisphere using some probability

distribution and trace it until it hits another object in the space.

Then we solve the rendering equation for said surface by only

using those several ray samples and aggregating the result with

the result from previous frames. It is important to divide the

radiance by the probability of the sampled ray to ensure the

result is comparably correct to the analytical version.

However, due to its unbiased nature, rendering images by

sampling random lights as in path tracing will result in noise

artifacts. This is why a naïve path tracer is only used to render

reference images when testing and comparing other rendering

algorithms.

III. METHOD

To get a better understanding of how vectors are used in path

tracing, let us implement path tracing and render a simple scene.

We use shadertoy to write GLSL code and render it.

First, lets set up the ray that we will trace, starting from the

camera. Consider the camera as the origin point.

Here we set the rayPosition at the camera or the origin point.

The ray direction would then be set to the viewport, which spans

from the -1 to 1, from the left and bottom of the screen to the

right and top.

Now we can set up the main path tracing loop. The way this

works is by using a for-loop with each iteration indicating each

light bounce. While light in real life bounces a lot of time until

it runs out of energy, the amount of energy loss after the first

few bounces is enough to make it insignificant to the render

result. For the sake of simplicity, we will only simulate the

diffuse reflection part only. This means in every bounce; the

light ray will generate a totally random cosine-weighted

direction oriented around the normal hemisphere.

After tracing the ray, if the ray hits an object, it will grab the

material data and calculate the radiance for that position.

However, if the ray misses an object, it will simply add zero or

black. Usually in most other path tracers, when missing an

object, a sky illumination is used. It is used to add “ambient”

feel and lighting

On each loop, we trace the ray by checking if the ray with the

given origin and direction will intersect with the objects on the

scene. For the sake of simplicity, let’s just assume that only

planes and spheres exist. The traceScene function will check if

the ray intersect will any of the objects by checking it one-by-

one. Obviously, this is not the best way to handle this. Much

more “smart” and performant method of checking ray-object

intersection have been developed such as BVH tree, which

groups triangles into some sort of binary tree. But this is outside

the scope of this paper.

Fig. 7. Ray set up.
(Source: author’s code)

Fig. 9. Path tracing loop.
(Source: autho’s code)

Fig. 6. Plane normal calculation.

(Source: author’s code)

Fig. 8. Sphere normal calculation.

(Source: author’s code)

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

Let’s also take a look at the plane intersection function. Here

we can see how cross product used to calculate the normal of the

plane. By doing cross product of vectors that start from a vertex

and points to different vertices, we can get the normal vector.

Note that the normal can be facing frontward or backward. If the

orientation is wrong (relative to the ray), then we can simply

swap the vertices and multiply the normal by -1.

On the contrary, calculating the normal for sphere is easier

and does not require a cross product. Because each point on the

sphere surface has the same distance to the center, we can simply

do some basic vector operation to get the normal.

We can see that noise is very apparent in a naïve path tracer

like this, especially on lower sample. This result can be further

improved by:

1) Importance Sampling

As for now, the sampling is just a random cosine-

weighted ray in the normal oriented hemisphere. But

better methods have been developed such as direct

light sampling, or even a different sampling method

for different situations. These kinds of sampling

methods are called importance sampling, because

they sample what is important in the scene.

2) Multiple Importance Sampling

It is possible to do multiple importance sampling at

once by doing multiple important sampling (MIS).

However, you need to be careful when doing math

to avoid energy loss or gain.

3) Increasing sample count

The easiest way to get better quality render is by

increasing the sample count per pixel. However, the

performance will be slower.

V. CONCLUSION

In this paper, we explored how vectors and their operations

play a fundamental role in simulating light behavior in path

tracing for realistic image rendering. By leveraging vector

mathematics, such as dot products for light reflection and cross

products for surface normals, we demonstrated how light

interactions with surfaces can be accurately modeled. These

techniques allow us to approximate complex optical

phenomena, including diffuse, enabling photorealistic visuals in

computer graphics. While path tracing simplifies light transport

by treating light as rays, it effectively captures many real-world

behaviors through vector-based calculations, making it a

powerful and practical approach for rendering realistic images.

VI. APPENDIX

The source code for the path tracer code used in this paper can

be found here: Pathtracer Algeo

VII. ACKNOWLEDGMENT

The author would like to express his gratitude to God

Almighty who has given his blessings, so that the author can

complete the paper entitled "Simulating Light Behavior using

Vector through Path Tracing for Realistic Image Rendering"

which was completed on time. The author would also like to

thank Dr. Judhi Santoso, M.Sc. and Arrival Dwi Sentosa,

S.Kom., M.T. as the lecturer in charge of the IF2123 Geometric

and Linear Algebra Class 3 course for the guidance and teaching

that has been carried out in this class. The author would also like

to thank Mr. Dr. Ir. Rinaldi Munir, MT. as one of the lecturers

in Geometric and Linear Algebra who provided references and

learning resources for Geometric and Linear Algebra

Mathematics through his website. Finally, the author would like

to thank his parents, family, and all parties who helped the

author in completing this paper.

REFERENCES

[1] Immel, David S.; Cohen, Michael F.; Greenberg, Donald P. (1986). "A

radiosity method for non-diffuse environments". Accessed on 2 January

2025.
[2] Kajiya, James T. (1986). "The rendering equation". Accessed on 2 January

2025.

Fig. 10. Render result on a) 5 frames, b) 50 frames, and c) 500 frames.

(Source: author’s code)

https://www.shadertoy.com/view/4XGczR

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 Desember 2024

Fachriza Ahmad Setiyono 13523162

