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Abstract—Path tracing, a widely used technique in computer 

graphics, models light transport by tracing rays and computing 

their interactions with surfaces. The study begins by examining the 

use of photorealistic image rendering, the fundamental properties 

of light, including reflection, refraction, and scattering, and 

demonstrates how these behaviors can be mathematically 

represented using vectors. Key vector operations such as dot and 

cross products are analyzed to handle computations related to 

surface normals, ray directions, and light intensity. 
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I.   INTRODUCTION 

Rendering realistic digital images has been an ongoing 

challenge in the computer graphics field. Several rendering 

techniques have been developed by researchers but there are 2 

techniques that are widely used, rasterization and ray tracing. 

These 2 techniques are fundamentally different, thus has its own 

strengths and weaknesses. Rasterization works by projecting 

triangles directly to the screen, while ray tracing traces numbers 

of rays from the camera to objects, which results in higher 

performance cost. Despite being slower, ray tracing is still 

widely used for rendering photorealistic images because tracing 

individual ray means we can accurately simulate how real light 

behaves in real life. 

Photorealistic image rendering is a field within computer 

graphics which focuses on producing realistic images by 

simulating real life physics phenomena in a way that models 

light and its interaction with surfaces. This approach is often 

called Physically Based Rendering (PBR). PBR has a lot of uses, 

especially in the entertainment industry such as video games and 

movies. In the business industry, PBR can be used to market and 

visualize products. Using computer-generated image is often 

favored because of its lower cost and higher efficiency while 

still being able to resemble the real product accurately. PBR is 

also used for educational purposes, such as flight and medical 

simulations. 

One of the most popular techniques to render photorealistic 

images is path tracing. Path tracing utilizes ray tracing and 

expands on it by allowing light bounce after hitting a surface. 

Illustration of how ray bounces is shown in Fig. 1. 

 

 
Fig. 1. Ray bounces in path tracing 

(Source: https://www.techspot.com/articles-info/2485/images/2022-07-10-

image.png) 
 

Wave-particle duality theory states that light has the 

properties of both a wave and a particle. In an ideal environment, 

light as a particle moves in a straight line through a 3-

dimensional space, while light as a wave “moves’ in a manner 

that resembles a wave function. Vector is used to represent light 

particles or rays as rays consist of an origin point and direction. 

This method of simulating light as rays is called geometric optic, 

as opposed to wave optic. However, simulating only the particle 

properties of light means that we cannot achieve physical 

phenomena caused by wave optics such as thin-film interference 

and diffraction. In this paper, we consider that only simulating 

light as a ray is sufficient to demonstrate the use of vector. 

We will also analyze how vector algebraic operations are used 

in rendering techniques such as ray tracing and path tracing. In 

a state-of-the-art ray tracer, a more complex concept such as 

quaternion algebra and matrix operations might be used. 

However, that is outside the scope of this paper. This paper 

offers insights into how vectors serve as the foundation for 

modern rendering techniques and provides a basis for extending 

these methods to more advanced light simulations. 

 

II. BACKGROUND 

A. Euclidean Vector 

Euclidean vector or a vector is a mathematical geometric 

object that consists of magnitude and direction. Vectors are 

denoted as lowercase letter with arrow or hat on top such as 𝑢⃗     
and 𝑣̂. 

Vector can also be denoted as two uppercase letters with 
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arrow on top 𝐴𝐵⃗⃗⃗⃗  ⃗ to depict a connection from point A to point B. 

The magnitude of a vector is the distance between the two points 

while the direction is the direction of the vector displacement. 

Vectors can also be written in a coordinate system such as 

(𝑣1, 𝑣2, 𝑣3) to represent a 3-dimensional vector 𝑣 . The 

coordinate system used here refers to (0,0,0) as the origin point. 

There are various types of vectors such as:  

1. Zero Vector 

Zero vector is a vector with magnitude of zero and no 

direction, denoted by 0⃗ . In a 3-dimension Euclidean space 

with coordinate system, the zero vector is written as (0,0,0). 

2. Position Vector 

A point in an n-dimensional space is represented by n-

dimensional vectors. Position vector is denoted with 

lowercase letter with arrow on top such as 𝑢⃗ . In physical 

sense, the magnitude of position vector is the distance 

between the point and other relative arbitrary point, usually 

the origin point 0⃗ . This means that a single point has 

different position vectors in relation to different reference 

points. 

3. Unit Vector 

Unit vector is a vector with magnitude of 1, denoted by 

lowercase letter with a hat as in 𝑣̂. We can say that the 

normalized vector 𝑢̂ is the unit vector of a non-zero vector 

𝑢⃗ , or in mathematical notation, 

 

 
𝑢̂ =

𝑢⃗ 

‖𝑢⃗ ‖
 

 

(1) 

   

Because of this, the term unit vector and normalized vector 

is often synonymously used. 

 Unit vector is used a lot in the scope of computer 

graphics, notably to denote directions. Having the direction 

normalized simplifies the unit to be used by other 

operations that requires direction. For instance, a ray in a 3-

dimensional space from point A to point B in reference to 

the origin point can be formed with a position vector and a 

unit vector as a direction with multiplier 𝑡 as the ray 

distance. This can be written as: 

 

 𝑃(𝑡) = 𝑂⃗ + 𝑡𝐷̂ 
 

(2) 

Where:  

𝑂⃗ : Ray origin point  

𝐷̂: Ray normalized direction from 𝐴 to 𝐵   

𝑡: Ray Euclidean distance  

 

Equation (2) is called the parametric equation for rays. If 

the ray direction were not normalized, then we must 

account for the length of the direction vector when 

calculating the distance 𝑡. Having said that, normalizing 

vector is considered a costly operation, so it is wise to 

normalize a vector only when it is needed. 

4. Normal Vector 

Normal vector or simply normal is a vector that is 

perpendicular to its surface. While normal vector does not 

have to be a unit vector, it is very common to normalize 

normal vector for the very same reason explained in the 

previous section. In computer graphics, normal is required to 

calculate the shading on a surface. Normal can be calculated 

by finding the cross product of the surface points.  

 

B. Euclidean Vector Space 

A set of Euclidean vectors forms a Euclidean vector space, or 

simply called a Euclidean space. Euclidean space of n-

dimensional vectors is denoted with 𝑅𝑛. In this paper, we will 

mostly deal with 3-dimensional Euclidean space. 

All vectors within the Euclidean space must satisfy the 

properties of algebraic operations in a Euclidean space: 

 

a) 𝑢⃗ + 𝑣 = 𝑣 + 𝑢⃗  
b) 𝑢⃗ + (𝑣 + 𝑤⃗⃗ ) = (𝑢⃗ + 𝑣 ) + 𝑤⃗⃗  
c) 𝑢⃗ + 0 =  0 + 𝑢⃗ =  𝑢⃗  
d) 𝑢⃗ + (−𝑢⃗ ) = 0 

e) 𝑘(𝑢⃗ + 𝑣 ) = 𝑘𝑢⃗ + 𝑘𝑣  

f) (𝑘 + 𝑚)𝑢⃗ = 𝑘𝑢⃗ + 𝑚𝑢⃗  
g) 𝑘(𝑚𝑢⃗ ) = (𝑘𝑚)𝑢⃗  
h) 1𝑢⃗ = 𝑢⃗  

 

Vectors also have other operations defined in this space, 

such as: 

1. Dot Product 

A dot product of two non-zero Euclidean vectors 𝑢⃗  and 

𝑣  with angle 𝜃 is defined by geometric definition as: 

 

 𝑢⃗ ∙ 𝑣 = ‖𝑢⃗ ‖‖𝑣 ‖ cos 𝜃 
 

(3) 

In computer graphics, dot product or inner product is 

heavily used to calculate the product of cos 𝜃 between two 

unit vectors. Looking at (3), if two of the vectors are 

normalized, then we can simply write it as: 

 

 𝑢̂ ∙ 𝑣̂ = cos 𝜃 
 

(4) 

Note that the result of dot product operation is a scalar 

and if both vectors are orthogonal, the resulting dot product 

is 0. 

2. Cross Product 

A cross product is only defined in a 3-dimensional 

Euclidean space and is denoted by 𝑢⃗ × 𝑣 . The result of a 

Fig. 2. a) Vector in a 2-dimensional Euclidean space and b) Vector in a 3-

dimensional space 

(Source: Vektor di Ruang Euclidean (bagian 1)-2024) 
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cross product between 2 vectors is another vector that is 

perpendicular to both vector 𝑢⃗  and 𝑣 . Mathematically, cross 

product is defined as: 

 

 𝑢⃗ × 𝑣 = ‖𝑢⃗ ‖‖𝑣 ‖ sin 𝜃 𝑛̂ 
 

(5) 

Where:  

𝜃: Angle between vector 𝑢⃗  and 𝑣   

𝑛̂: Unit vector of the resulting vector  

 

Cross products can be used to calculate the normal of a 

surface or plane 𝑃 that is defined by set of points in space. 

Let 𝑃 and 𝑃1 be 3-dimensional position vector inside a 

defined plane 𝑃 that are not parallel to each other, then the 

plane normal 𝑛⃗  can be calculated by finding the cross 

product between 𝑃 and 𝑃1.  Note that you cannot use two 

position vectors that are parallel to calculate the normal 

because the angle would be either 0° or 180°, which will 

result in the product of sin 𝜃 in (5) being zero, thus 

nullifying the normal vector. In computer graphics, we 

usually use quad or triangle vertices as the points relative to 

the surface to calculate the normal vector. 

 

 

C. The Rendering Equation 

Reference [1], [2] introduces the rendering equation (also 

called the reflectance equation) to the computer graphic field, an 

equation that models the interaction between light and surface. 

We can write a more generalized form of the equation as: 

 

 

𝐿0(𝑥, 𝜔𝑜) = ∫ 𝑓𝑟(𝑥, 𝜔𝑖 , 𝜔𝑜)𝐿𝑖(𝑥, 𝜔𝑖)𝑛̂ ∙ 𝜔𝑖 𝑑𝜔𝑖

Ω

+ 𝐿𝑒(𝑥, 𝜔𝑜) 
 

(6) 

Where:  

𝑥: Position in space  

𝑛̂: Unit normal vector at 𝑥  

𝜔𝑜: Direction of outgoing radiance  

𝜔𝑖: Negative direction of incoming radiance  

𝐿𝑜: Outgoing light radiance  

𝐿𝑖: Incoming light radiance  

𝐿𝑒: Emitted light radiance  

𝑓𝑟: Bidirectional Reflectance Distribution 

Function (BRDF) 

 

 

In other words, this equation states that at point 𝑥, the light 

coming in the direction of observer (e.g. our eyes) is the sum of 

infinitely many incoming lights from another point in space 

around the normal hemisphere multiplied by some factor. A 

hemisphere can be described as half a sphere aligned around the 

surface normal. Note that (6) considers every point visible from 

𝑥 as light sources. 

The incoming lights are multiplied by the factor BRDF (𝑓𝑟) 

and the dot product between the surface normal and the 

incoming light direction (𝑛̂ ∙ 𝜔𝑖). The BRDF is a function that 

approximates how much an incoming light will contribute to the 

final reflected light. There are many BRDF model such as Blinn-

Phong Model, Cook-Torrance Model, and Oren-Nayar Model. 

Some models like Cook-Torrance is considered as a microfacet 

model. These models works by statistically modelling the 

scattering of light from a large collection of many microscopic 

mirror-like surfaces (microfacet) that defines a surface. 

Microfacet models are used because we are limited by a lot of 

factors such as the screen pixel size. In Fig we can see the 

“macrosurface” as the blue line with the normal going straight 

up. If that is the smallest pixel that can be drawn to the screen, 

then we cannot represent how the surface is much rougher than 

it is, as shown by the jagged lines. 

 

D. Path Tracing 

Path tracing is a Monte Carlo method to solve the rendering 

equation. If we look back at (6), it is clear that the incoming light 

radiance from a direction 𝜔𝑖 must be known. But that incoming 

light from 𝜔𝑖 also need to be calculated using the rendering 

Fig. 4. Calculating plane normal using cross product. 

(Source: https://www.songho.ca/math/plane/plane.html) 

 

Fig. 3. Hemisphere oriented around normal 

(Source: https://learnopengl.com/PBR/Theory) 

 

Fig. 5. Microfacet for a) very rough surface and b) smoother surface. 

(Source: https://pbr-book.org/3ed-
2018/Reflection_Models/Microfacet_Models) 
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equation, adding layers of complex recursion. This makes it 

generally impossible to solve the equation analytically. 

Path tracing works by generating several random rays from 

the surface normal hemisphere using some probability 

distribution and trace it until it hits another object in the space. 

Then we solve the rendering equation for said surface by only 

using those several ray samples and aggregating the result with 

the result from previous frames. It is important to divide the 

radiance by the probability of the sampled ray to ensure the 

result is comparably correct to the analytical version. 

However, due to its unbiased nature, rendering images by 

sampling random lights as in path tracing will result in noise 

artifacts. This is why a naïve path tracer is only used to render 

reference images when testing and comparing other rendering 

algorithms. 

 

III.   METHOD 

To get a better understanding of how vectors are used in path 

tracing, let us implement path tracing and render a simple scene. 

We use shadertoy to write GLSL code and render it. 

First, lets set up the ray that we will trace, starting from the 

camera. Consider the camera as the origin point. 

 

Here we set the rayPosition at the camera or the origin point. 

The ray direction would then be set to the viewport, which spans 

from the -1 to 1, from the left and bottom of the screen to the 

right and top.  

Now we can set up the main path tracing loop. The way this 

works is by using a for-loop with each iteration indicating each 

light bounce. While light in real life bounces a lot of time until 

it runs out of energy, the amount of energy loss after the first 

few bounces is enough to make it insignificant to the render 

result. For the sake of simplicity, we will only simulate the 

diffuse reflection part only. This means in every bounce; the 

light ray will generate a totally random cosine-weighted 

direction oriented around the normal hemisphere. 

After tracing the ray, if the ray hits an object, it will grab the 

material data and calculate the radiance for that position. 

However, if the ray misses an object, it will simply add zero or 

black. Usually in most other path tracers, when missing an 

object, a sky illumination is used. It is used to add “ambient” 

feel and lighting 

On each loop, we trace the ray by checking if the ray with the 

given origin and direction will intersect with the objects on the 

scene. For the sake of simplicity, let’s just assume that only 

planes and spheres exist. The traceScene function will check if 

the ray intersect will any of the objects by checking it one-by-

one. Obviously, this is not the best way to handle this. Much 

more “smart” and performant method of checking ray-object 

intersection have been developed such as BVH tree, which 

groups triangles into some sort of binary tree. But this is outside 

the scope of this paper. 

Fig. 7. Ray set up. 
(Source: author’s code) 

Fig. 9. Path tracing loop. 
(Source: autho’s code) 

Fig. 6. Plane normal calculation. 

(Source: author’s code) 

Fig. 8. Sphere normal calculation. 

(Source: author’s code) 
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Let’s also take a look at the plane intersection function. Here 

we can see how cross product used to calculate the normal of the 

plane. By doing cross product of vectors that start from a vertex 

and points to different vertices, we can get the  normal vector. 

Note that the normal can be facing frontward or backward. If the 

orientation is wrong (relative to the ray), then we can simply 

swap the vertices and multiply the normal by -1. 

On the contrary, calculating the normal for sphere is easier 

and does not require a cross product. Because each point on the 

sphere surface has the same distance to the center, we can simply 

do some basic vector operation to get the normal.  

We can see that noise is very apparent in a naïve path tracer 

like this, especially on lower sample.  This result can be further 

improved by: 

1) Importance Sampling 

As for now, the sampling is just a random cosine-

weighted ray in the normal oriented hemisphere. But 

better methods have been developed such as direct 

light sampling, or even a different sampling method 

for different situations. These kinds of sampling 

methods are called importance sampling, because 

they sample what is important in the scene. 

 

2) Multiple Importance Sampling 

It is possible to do multiple importance sampling at 

once by doing multiple important sampling (MIS). 

However, you need to be careful when doing math 

to avoid energy loss or gain. 

 

3) Increasing sample count 

The easiest way to get better quality render is by 

increasing the sample count per pixel. However, the 

performance will be slower. 

 

V.   CONCLUSION 

In this paper, we explored how vectors and their operations 

play a fundamental role in simulating light behavior in path 

tracing for realistic image rendering. By leveraging vector 

mathematics, such as dot products for light reflection and cross 

products for surface normals, we demonstrated how light 

interactions with surfaces can be accurately modeled. These 

techniques allow us to approximate complex optical 

phenomena, including diffuse, enabling photorealistic visuals in 

computer graphics. While path tracing simplifies light transport 

by treating light as rays, it effectively captures many real-world 

behaviors through vector-based calculations, making it a 

powerful and practical approach for rendering realistic images. 

 

VI.   APPENDIX 

The source code for the path tracer code used in this paper can 

be found here: Pathtracer Algeo 
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Fig. 10. Render result on a) 5 frames, b) 50 frames, and c) 500 frames. 

(Source: author’s code) 
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